Thursday, 7 November 2013

trigonometry - Solve: $cos(theta + 25^circ) + sin(theta +65^circ) = 1$



This afternoon I've been studying the pythagorean identities & compound angles. I've got a problem with a question working with 2 sets of compound angles:




Solve, in the interval $0^\circ \leq \theta \leq 360^\circ$, $$\cos(\theta + 25^\circ) + \sin(\theta +65^\circ) = 1$$





I've attempted expanding but reach a point with no common factors & see how to manipulate the trig ratios to move on; is there a solution without expanding?



$$\cos\theta\cos 25^\circ-\sin\theta \sin 25^\circ+\sin\theta\cos 65^\circ+\sin 65^\circ\cos\theta=1$$



$$\cos \theta\;\left(\cos 25^\circ+\sin 65^\circ\right) +\sin\theta\;\left(\cos 65^\circ-\sin 25^\circ\right)=1$$



Could you tell me if I've made a mistake or how I could continue;
thanks




coffee is wearing out


Answer



"Solve, in the interval 0≤θ≤360, cos(θ+25)+sin(θ+65)=1"



$\cos(\theta+25)+\cos(25-\theta)=1$



∵ $\sin(\theta+65)=\cos(90-(\theta+65))=\cos(25-\theta)$



$\cos(\theta)\cos(25)- \sin(\theta)\sin(25)+\cos(25)\cos(\theta)+\sin(\theta)\sin(25)=1$




$2\cos(\theta)\cos(25)=1$



$\cos(\theta)=\frac{1}{2\cos(25)}$



∴$\theta≈55.6°, 326.5°$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...