I need to show that if $(n-2)! \equiv 1 \pmod n$ then $n$ is prime.
I think that if $n$ is composite, then we'll have every factor of $n$ in $(n-2)!$, and it would yield that $(n-2)! \equiv 0 \pmod n$.
However, I didn't use the fact that it specifically congruent to $1 \bmod n$, so I think I'm getting something fundamental wrong. Is my solution correct? Why do we demand congruence to $1 \bmod n$?
Thursday, 10 July 2014
congruences - Showing a number $n$ is prime if $(n-2)! equiv 1 pmod n$
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment