Friday, 4 July 2014

Evaluate $ sum_{n=1}^{infty} frac{sin n}{ n } $ using the fourier series



I am a beginner with Fourier series and I have to evaluate the sum



$$\sum_{n =1}^{\infty}{\sin\left(n\right) \over n}$$



I don't know which function I have to take to evaluate the fourier series ...
Someone can give me a hint ?




Thanks in advance!


Answer



$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%

\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\half}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%

\newcommand{\ol}[1]{\overline{#1}}%
\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$

$\ds{\sum_{n = 1}^{\infty}{\sin\pars{n} \over n} = \half\pars{\,\sum_{n = -\infty}^{\infty}{\sin\pars{n} \over n} - 1}.\quad}$ See $\large\tt details$
over here .




\begin{align}
\sum_{n = -\infty}^{\infty}{\sin\pars{n} \over n}&=
\int_{-\infty}^{\infty}{\sin{x} \over x}\sum_{n = -\infty}^{\infty}\expo{2n\pi x\ic}
\,\dd x
=
\int_{-\infty}^{\infty}\half\int_{-1}^{1}\expo{\ic kx}\,\dd k

\sum_{n = -\infty}^{\infty}\expo{-2n\pi x\ic}\,\dd x
\\[3mm]&=
\pi\sum_{n = -\infty}^{\infty}\int_{-1}^{1}\dd k
\int_{-\infty}^{\infty}\expo{\ic\pars{k - 2n\pi}x}\,{\dd x \over 2\pi}
=
\pi\sum_{n = -\infty}^{\infty}\int_{-1}^{1}\delta\pars{k - 2n\pi}\,\dd k
\\[3mm]&=
\pi\sum_{n = -\infty}^{\infty}\Theta\pars{{1 \over 2\pi} - \verts{n}}
= \pi\,\Theta\pars{1 \over 2\pi} = \pi
\end{align}



Then,
$$\color{#0000ff}{\large%
\sum_{n = 1}^{\infty}{\sin\pars{n} \over n} = \half\pars{\pi - 1}}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...