Friday, 11 July 2014

real analysis - $sum limits_{n=1}^{infty}n(frac{2}{3})^n$ Evalute Sum












How can you compute the limit of
$\sum \limits_{n=1}^{\infty} n(2/3)^n$



Evidently it is equal to 6 by wolfram alpha but how could you compute such a sum analytically?


Answer



$$
\begin{align*}
\sum_{n=1}^\infty n(2/3)^n &=
\sum_{m=1}^\infty \sum_{n=m}^\infty (2/3)^n \\ &=
\sum_{m=1}^\infty \frac{(2/3)^m}{1-2/3} \\ &=

\frac{2/3}{(1-2/3)^2} = 6.
\end{align*}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...