How do I find the sum of the following infinite series:
$$\frac{2}{5\cdot10}+\frac{2\cdot6}{5\cdot10\cdot15}+\frac{2\cdot6\cdot10}{5\cdot10\cdot15\cdot20 }+\cdots$$
I think the sum can be converted to definite integral and calculated but I don't know how to proceed from there.
Thursday, 3 July 2014
Sum of the series $frac{2}{5cdot10}+frac{2cdot6}{5cdot10cdot15}+frac{2cdot6cdot10}{5cdot10cdot15cdot20 }+cdots$
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
The question said: Use the Euclidean Algorithm to find gcd $(1207,569)$ and write $(1207,569)$ as an integer linear combination of $1207$ ...
No comments:
Post a Comment