Saturday, 6 September 2014

permutations - Calculating the probability of receiving all possible rewards after 15 events



I encountered this question in my Data Management and Statistics textbook. I tried to calculate the probability using binomial theorem and combinations/permutations, but I could only get close to the answer. I would really appreciate any help with this question:



If Joe buys a cereal box and it has the following probabilities of giving one of the five possible rewards:





  • Toy Car: 20%

  • Toy Truck: 30%

  • Toy Spoon: 10%

  • Toy Doll: 35%

  • Toy Gun: 5%



What is the probability of Joe getting all the rewards after buying 15 cereal boxes?




Thank you in advance


Answer



Use the Inclusion/Exclusion principle:




  1. Start with $1$


  2. Subtract the following:





    • The probability of not winning C is $(1-0.20)^{15}$

    • The probability of not winning T is $(1-0.30)^{15}$

    • The probability of not winning S is $(1-0.10)^{15}$

    • The probability of not winning D is $(1-0.35)^{15}$

    • The probability of not winning G is $(1-0.05)^{15}$


  3. Add the following:




    • The probability of not winning C,T is $(1-0.20-0.30)^{15}$


    • The probability of not winning C,S is $(1-0.20-0.10)^{15}$

    • The probability of not winning C,D is $(1-0.20-0.35)^{15}$

    • The probability of not winning C,G is $(1-0.20-0.05)^{15}$

    • The probability of not winning T,S is $(1-0.30-0.10)^{15}$

    • The probability of not winning T,D is $(1-0.30-0.35)^{15}$

    • The probability of not winning T,G is $(1-0.30-0.05)^{15}$

    • The probability of not winning S,D is $(1-0.10-0.35)^{15}$

    • The probability of not winning S,G is $(1-0.10-0.05)^{15}$

    • The probability of not winning D,G is $(1-0.35-0.05)^{15}$



  4. Subtract the following:




    • The probability of not winning C,T,S is $(1-0.20-0.30-0.10)^{15}$

    • The probability of not winning C,T,D is $(1-0.20-0.30-0.35)^{15}$

    • The probability of not winning C,T,G is $(1-0.20-0.30-0.05)^{15}$

    • The probability of not winning C,S,D is $(1-0.20-0.10-0.35)^{15}$

    • The probability of not winning C,S,G is $(1-0.20-0.10-0.05)^{15}$

    • The probability of not winning C,D,G is $(1-0.20-0.35-0.05)^{15}$

    • The probability of not winning T,S,D is $(1-0.30-0.10-0.35)^{15}$


    • The probability of not winning T,S,G is $(1-0.30-0.10-0.05)^{15}$

    • The probability of not winning T,D,G is $(1-0.30-0.35-0.05)^{15}$

    • The probability of not winning S,D,G is $(1-0.10-0.35-0.05)^{15}$


  5. Add the following:




    • The probability of not winning C,T,S,D is $(1-0.20-0.30-0.10-0.35)^{15}$

    • The probability of not winning C,T,S,G is $(1-0.20-0.30-0.10-0.05)^{15}$

    • The probability of not winning C,T,D,G is $(1-0.20-0.30-0.35-0.05)^{15}$


    • The probability of not winning C,S,D,G is $(1-0.20-0.10-0.35-0.05)^{15}$

    • The probability of not winning T,S,D,G is $(1-0.30-0.10-0.35-0.05)^{15}$




Please note that the sum of the probabilities is equal to $1$.



If it was smaller, then you would also need to subtract the probability of not winning C,T,S,D,G.







Here is a Python script for calculating that:



p = [0.20,0.30,0.10,0.35,0.05]

res = 1

for i in range(0,len(p)):
res -= (1-p[i])**15
for j in range(i,len(p)):

res += (1-p[i]-p[j])**15
for k in range(j,len(p)):
res -= (1-p[i]-p[j]-p[k])**15
for n in range(k,len(p)):
res += (1-p[i]-p[j]-p[k]-p[n])**15

print res


The result is $0.54837227253$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...