Friday, 5 September 2014

elementary set theory - How do I prove the following: $f(Scup T) = f(S) cup f(T)$




I have a question.



How do I prove the following identity?
$$

f(S\cup T) = f(S) \cup f(T)
$$


Answer



Element chasing is a promising method here.



$y\in f(s\cup t)$ if and only if there is some $x\in s\cup t$ such that $f(x)=y$. If $x\in s$ then $y\in f(s)$, if $x\in t$ then $y\in f(t)$. Therefore $y\in f(s)\cup f(t)$.



I leave the second inclusion to you.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...