Friday, 5 September 2014

sequences and series - How do I evaluate this sum :$ sum_{n=1}^{infty}frac{{(-1)}^{n-1}log n}{n^s}$?

How do I evaluate this sum :$$ \sum_{n=1}^{\infty}\frac{{(-1)}^{n-1}\log n}{n^s}$$



Note : In wolfram alpha it is convergent for $Re(s)>1$ .!!



Thank you for any help

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...