How to solve the following limit using mathematics Stirling lim.
a) \lim\limits_{n\to \infty}\frac{n!e^n}{n^{n+1/2}}.
b) \lim\limits_{n\to \infty}\frac{(2n)!}{e^{-2n}(2n)^{2n}\sqrt{n}}.
c) \lim\limits_{n\to \infty}\frac{(2n)!\sqrt{n}}{n!^24^{n}}.
d) \lim\limits_{n\to \infty}\frac{\sqrt[n]{n!}}{n}.
For a), \frac{n!e^n}{n^{n+1/2}}=\frac{\sqrt{2\pi}}{\sqrt{2\pi}}\frac{n!}{n^{n} e^{-n} \sqrt{n}}. Therefore the limit is \sqrt{2\pi}
For b) and c), I don't know how we can modify (2n)!
For d), \frac{\sqrt[n]{n!}}{n}=\frac{\sqrt[n]{n}\sqrt[n]{(n-1)!}}{n}. But then I don't know how to proceed?
Could someone help?
Answer
First of all,
you need to state Stirling's theorem
in its proper form:
\lim\limits_{n\to \infty}\frac{n!}{n^ne^{-n}\sqrt{2\pi n}} =1 .
By multiplying by
\sqrt{2\pi},
you can restate this as
\lim\limits_{n\to \infty}\frac{n!}{n^ne^{-n}\sqrt{ n}} =\sqrt{2\pi} .
To answer (b),
replace n by 2n
above to get
\sqrt{2\pi} =\lim\limits_{n\to \infty}\frac{(2n)!}{(2n)^{2n}e^{-2n}\sqrt{ 2n}} ,
or,
multiplying by \sqrt{2},
2\sqrt{\pi} =\lim\limits_{n\to \infty}\frac{(2n)!}{(2n)^{2n}e^{-2n}\sqrt{ n}} .
Combining the results
for n! and (2n)!,
which is a standard technique
to estimate
\binom{2n}{n},
and using
f(n) \approx g(n)
to mean
\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1 ,
we have
n! \approx n^ne^{-n}\sqrt{2\pi n}
and
(2n)! \approx (2n)^{2n}e^{-2n}2\sqrt{\pi n}
so that
\begin{array}\\ \frac{(2n)!}{n!^2} &\approx \frac{(2n)^{2n}e^{-2n}2\sqrt{\pi n}}{(n^ne^{-n}\sqrt{2\pi n})^2}\\ &= \frac{2^{2n}n^{2n}e^{-2n}2\sqrt{\pi n}}{n^{2n}e^{-2n}2\pi n}\\ &= \frac{4^{n}}{\sqrt{\pi n}}\\ \text{or}\\ \frac{(2n)!\sqrt{\pi n}}{n!^24^{n}} &\approx 1\\ \end{array}
so that
\lim\limits_{n\to \infty}\frac{(2n)!\sqrt{n}}{n!^24^{n}} =\frac1{\sqrt{\pi}} .
For the last one,
since
\lim\limits_{n\to \infty}\frac{n!}{n^ne^{-n}\sqrt{2\pi n}} =1 ,
taking the n-th root,
this becomes
\begin{array}\\ 1 &=\lim\limits_{n\to \infty}\left(\frac{n!}{n^ne^{-n}\sqrt{2\pi n}}\right)^{1/n}\\ &=\lim\limits_{n\to \infty}\left(\frac{n!} {n^ne^{-n}}\right)^{1/n}\frac1{\sqrt{2\pi n}^{1/n}}\\ &=\lim\limits_{n\to \infty}\frac{n!^{1/n}e} {n} \qquad\text{since } n^{1/n}\to 1 \text{ and } c^{1/n}\to 1\\ \end{array}
so
\lim\limits_{n\to \infty}\frac{n!^{1/n}} {n} = e .
No comments:
Post a Comment