Sunday, 11 January 2015

Limit $lim_{xrightarrowinfty}sqrt{log(x)log(ax)}-log(x)=frac{log{a}}{2}$




I feel really dumb asking this, but I am stuck. Why is



$$\lim_{x\rightarrow\infty}\sqrt{\log(x)\log(ax)}-\log(x)=\frac{\log{a}}{2}$$



(according to Wolfram Mathematica).



Let's assume that $a>1$. I expand the $\log(ax)$ term and obtain:



$$\lim_{x\rightarrow\infty}\sqrt{\log^2(x)+\log(x)\log(a)}-\log(x)$$




The term inside the square root is larger than $\log^2(x)$ due to addition of $\log(x)$ times a constant, and my intuition suggests that the limit diverges. What am I missing?


Answer



$\newcommand{\+}{^{\dagger}}%
\newcommand{\angles}[1]{\left\langle #1 \right\rangle}%
\newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}%
\newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}%
\newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}%
\newcommand{\dd}{{\rm d}}%
\newcommand{\ds}[1]{\displaystyle{#1}}%
\newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}%

\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}%
\newcommand{\fermi}{\,{\rm f}}%
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}%
\newcommand{\half}{{1 \over 2}}%
\newcommand{\ic}{{\rm i}}%
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}%
\newcommand{\isdiv}{\,\left.\right\vert\,}%
\newcommand{\ket}[1]{\left\vert #1\right\rangle}%
\newcommand{\ol}[1]{\overline{#1}}%

\newcommand{\pars}[1]{\left( #1 \right)}%
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}%
\newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}%
\newcommand{\sech}{\,{\rm sech}}%
\newcommand{\sgn}{\,{\rm sgn}}%
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}%
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$




\begin{align}
&\root{\ln\pars{x}\ln\pars{ax}} - \ln\pars{x}
={\ln\pars{x}\ln\pars{ax} - \ln^{2}\pars{x}
\over \root{\ln\pars{x}\ln\pars{ax}} + \ln\pars{x}}
={\ln\pars{x}\ln\pars{a}
\over \root{\ln\pars{a}\ln\pars{x} + \ln^{2}\pars{x}} + \ln\pars{x}}
={\ln\pars{a}
\over \root{\ln\pars{a}/\ln\pars{x} + 1} + 1}
\stackrel{x \to \infty}{\to} \color{#0000ff}{\Large\half\,\ln\pars{a}}
\end{align}



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...