Wednesday, 7 January 2015

limits - How to prove this equation? ( find the maximum of a sequence)





I have a sequence, called $A$. It's elements are $a_1 , a_2 , \ldots , a_n $ for example: $(5, 11, 2)$



Then how to prove, that this formula results the highest value in the series?



$$ \lim_{x \rightarrow \infty} \sqrt[x]{ \sum\limits_{i=1}^n a_i^x } = \max( a_1, \ldots, a_n ) $$


Answer



hint: $$\text{max}(a_1,a_2,\cdots,a_n) \leq S \leq n^{\frac{1}{x}}\cdot\text{max}(a_1,a_2,\cdots,a_n)$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...