Sunday, 3 May 2015

calculus - $ text{Prove:} , {a_n}>0, displaystyle{lim_{n to infty}} { a_n }=L Rightarrow displaystyle{ lim_{n to infty } {a_n }^frac{1}{n}}=1 $

I have this exercise to prove in calculus 1:



$$ \text{Prove:} \, \{a_n\}>0, \displaystyle{\lim_{n \to \infty}} \{ a_n \}=L \Rightarrow \displaystyle{ \lim_{n \to \infty } \{a_n \}^\frac{1}{n}}=1 $$



Where "$\{a_n\}$" is a sequence.




We proved in class that $ \displaystyle{\lim_{{n \to \infty }} \cfrac{1}{n}} = 0 $.



Any $L^0=1$.



$\displaystyle{\lim_{n \to \infty}} \{ a_n \}=L,L^0=1, \displaystyle{\lim_{n \to \infty}} \frac{1}{n} = 0 \Rightarrow \\ \displaystyle{\lim_{n \to \infty}} \{ a_n \} ^\frac{1}{n} = L^0=1 \\ QED$



Is my solution wrong? The solution of the university is different.
Their solution is:




$\text{Because} \, a_n \to L \, \text{then for} \, \epsilon = \frac{L}{2} \, \text{exists} \, N \, \text{such that} \, \forall n>N: \\ \cfrac{L}{2} = L-\cfrac{L}{2}

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...