Saturday, 2 May 2015

real analysis - Limit $limlimits_{ntoinfty} sqrt[n]{frac1{sqrt3}left(left(frac{1+sqrt3}2right)^n-left(frac{1-sqrt3}2right)^nright)}$




I have problems with finding: $$\lim_{n\to\infty} \sqrt[n]{{\frac{1}{\sqrt{3}}\Bigg(\Bigg(\frac{1+\sqrt{3}}{2}\Bigg)^n}-\Bigg(\frac{1-\sqrt{3}}{2}\Bigg)^n\Bigg)}$$ I tried to do it following way:



$\displaystyle\lim_{n\to\infty} \sqrt[n]{{\frac{1}{\sqrt{3}}\Bigg(\Bigg(\frac{1+\sqrt{3}}{2}\Bigg)^n}-\Bigg(\frac{1-\sqrt{3}}{2}\Bigg)^n\Bigg)}$



$\displaystyle\lim_{n\to\infty} \sqrt[n]{\frac{1}{\sqrt{3}}}\cdot\lim_{n\to\infty} \sqrt[n]{\Bigg(\Bigg(\frac{1+\sqrt{3}}{2}\Bigg)^n-\Bigg(\frac{1-\sqrt{3}}{2}\Bigg)^n\Bigg)}=$



$1\cdot\displaystyle\lim_{n\to\infty} \sqrt[n]{\Bigg(\Bigg(\frac{1+\sqrt{3}}{2}\Bigg)^n-\Bigg(\frac{1-\sqrt{3}}{2}\Bigg)^n\Bigg)}$



Now I used formula for difference of powers:
$$$$




$\Big(\frac{1+\sqrt{3}}{2}\Big)^n-\Big(\frac{1-\sqrt{3}}{2}\Big)^n=\Big(\frac{1+\sqrt{3}}{2}-\frac{1-\sqrt{3}}{2}\Big)\cdot\Big( \Big(\frac{1+\sqrt{3}}{2}\Big)^{n-2}\Big(\frac{1+\sqrt{3}}{2}\Big)+\Big(\frac{1+\sqrt{3}}{2}\Big)^{n-3}\Big(\frac{1+\sqrt{3}}{2}\Big)\Big(\frac{1-\sqrt{3}}{2}\Big)+\Big(\frac{1+\sqrt{3}}{2}\Big)^{n-4}\Big(\frac{1+\sqrt{3}}{2}\Big)\Big(\frac{1-\sqrt{3}}{2}\Big)+...+\Big(\frac{1-\sqrt{3}}{2}\Big)^{n-1}\Big)$



In the last parenthesis, I saw two geometric series and I tried to add them, however, it quickly appeared that there will be other geometric series and here is where I am a bit helpless (it is getting very nasty very quickly). Do you have any hints to move it in maybe another way? I would be very grateful, thanks!


Answer



For the beginning prove the following facts
$$
\lim\limits_{n\to\infty} \sqrt[n]{a}=1 \quad\text{ for }\quad a>0
$$
$$

\lim\limits_{n\to\infty} \sqrt[n]{x^n-y^n}=x\quad\text{ for }\quad x>|y|
$$
then apply them to the limit
$$
\lim\limits_{n\to\infty}\sqrt[n]{a(x^n-y^n)}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...