$$I=\int_{0}^{\infty}\cos{x}\ln\left({1+e^{-x}\over 1-e^{-x}}\right)dx=\sum_{n=0}^{\infty}{1\over n^2+(n+1)^2}\tag1$$
$$\ln\left({1+e^{-x}\over 1-e^{-x}}\right)=2\sum_{n=0}^{\infty}{e^{-(2n+1)x}\over 2n+1}\tag2$$
Sub $(2)$ into $(1)\rightarrow (3)$
$$I=2\sum_{n=0}^{\infty}{1\over 2n+1}\int_{0}^{\infty}e^{-(2n+1)x}\cos{x}dx\tag3$$
Apply integration by parts to $(4)$
Hence
$$I=\int_{0}^{\infty}e^{-(2n+1)x}\cos{x}dx={2n+1\over (2n+1)^2+1}\tag4$$
Apply $(4)$ into $(3)$
Hence
$$I=\sum_{n=0}^{\infty}{2\over (2n+1)^2+1}\tag5$$
Simplify $${2\over (2n+1)^2+1}={2\over 4n^2+4n+2}={1\over n^2+(n+1)^2}$$
Therefore
$$I=\sum_{n=0}^{\infty}{1\over n^2+(n+1)^2}\tag6$$
I am not able to determine the closed form for $(1)$, can anyone please help?
Edit(hint from Marco)
$$I=\int_{0}^{\infty}\cos{x}\ln\left({1+e^{-x}\over 1-e^{-x}}\right)dx={\pi\over 2}\tanh\left({\pi\over 2}\right)\tag1$$
Can anybody prove $(1)$ using another method?
Answer
Denoting
$$F(a)=\sum_{n=1}^\infty \frac{1}{n^2+a^2}=\frac{\pi a\coth\pi a-1}{2a^2}$$
(see, for example, here), we get
$$I=2\sum_{n=0}^\infty\frac{1}{(2n+1)^2+1}=2\left(\sum_{n=1}^\infty\frac{1}{n^2+1}-\sum_{n=1}^\infty\frac{1}{(2n)^2+1}\right)=2F(1)-\frac12 F\Bigl(\frac{1}{2}\Bigr).$$
No comments:
Post a Comment