Monday, 15 June 2015

calculus - Find the closed form for intinfty0cosxlnleft(1+exover1exright)dx=suminftyn=01overn2+(n+1)2




I=0cosxln(1+ex1ex)dx=n=01n2+(n+1)2




ln(1+ex1ex)=2n=0e(2n+1)x2n+1



Sub (2) into (1)(3)




I=2n=012n+10e(2n+1)xcosxdx



Apply integration by parts to (4)



Hence



I=0e(2n+1)xcosxdx=2n+1(2n+1)2+1



Apply (4) into (3)




Hence



I=n=02(2n+1)2+1



Simplify 2(2n+1)2+1=24n2+4n+2=1n2+(n+1)2



Therefore



I=n=01n2+(n+1)2




I am not able to determine the closed form for (1), can anyone please help?






Edit(hint from Marco)




I=0cosxln(1+ex1ex)dx=π2tanh(π2)





Can anybody prove (1) using another method?


Answer



Denoting
F(a)=n=11n2+a2=πacothπa12a2
(see, for example, here), we get
I=2n=01(2n+1)2+1=2(n=11n2+1n=11(2n)2+1)=2F(1)12F(12).


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...