Tuesday, 23 June 2015

elementary number theory - Solving a system of equations using modular arithmetic modulo 5



Give the solution to the following system of equations using modular arithmetic modulo 5:




$4x + 3y = 0 \pmod{5}$
$2x + y \equiv 3 \pmod{5}$




I multiplied $2x + y \equiv 3 \pmod 5$ by $-2$, getting $-4x - 2y \equiv -6 \pmod{5}$.




$-6 \pmod{5} \equiv 4 \pmod 5$



Then I added the two equations:




$4x + 3y \equiv 0 \pmod{5}$
$-4x - 2y \equiv 4 \pmod{5}$




This simplifies to $y \equiv 4 \pmod{5}$.




I then plug this into the first equation: $4x + 3(4) = 0 \pmod{5}$



Wrong work:




Thus, $x = 3$.
But when I plug the values into the first equation, I get $2(3) + 4 \not\equiv 3 \pmod{5}$.
What am I doing wrong?





EDIT:



Revised work:




$x = -3 \pmod{5} = 2 \pmod{5}$.
Now when I plug the values into the first equation, I get $2(2) + 4 \equiv 8 \pmod{5} \equiv 3 \pmod{5}$.



Answer



Sign error on substitution, it should be $x\equiv -3\pmod{5}$.




You had $4x+(3)(4)\equiv 0$, that is, $4(x+3)\equiv 0$. From this we get $x+3\equiv 0$, so $x\equiv -3\pmod{4}$.



Negative numbers are sometimes troublesome, so we may wish to rewrite as $x\equiv 2\pmod{5}$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...