Monday, 15 June 2015

Limit of asinxsin2x



If limx0asinxsin2xtan3x

is finite, then find a and the limit. Using series expansion, I got a=2, and then continuing I got the limit also 2, which is wrong. I don't know where am I going wrong.


Answer



asinxsin2x=asinx2sinxcosx=sinx(a2cosx)


limx0asinxsin2xtan3x=sinx(a2cosx)tan3x=(a2cosx)cos3xsin2x

for limit to exist numerator should go to zero as well , thus a=2 thus limit is equal to
limx0(a2cosx)cos3xsin2x=(22cosx)cos3xsin2x=22sin2x2sin2x=1


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...