If limx→0asinx−sin2xtan3x
is finite, then find a and the limit. Using series expansion, I got a=2, and then continuing I got the limit also 2, which is wrong. I don't know where am I going wrong.
Answer
asinx−sin2x=asinx−2sinxcosx=sinx(a−2cosx)
limx→0asinx−sin2xtan3x=sinx(a−2cosx)tan3x=(a−2cosx)⋅cos3xsin2x
for limit to exist numerator should go to zero as well , thus a=2 thus limit is equal to
limx→0(a−2cosx)⋅cos3xsin2x=(2−2cosx)⋅cos3xsin2x=2⋅2sin2x2sin2x=1
No comments:
Post a Comment