Friday, 12 June 2015

functions - How to approach proving $f^{-1}(Bsetminus C)=Asetminus f^{-1}(C)$?


Let $A,B,C$ be sets such that $C\subseteq B$. Let $f: A \to B$ be a function. Prove that $f^{-1} (B\setminus C)=A\setminus f^{-1} (C).$




I really need help with this proof problem. I'm not sure where to begin or what strategy to consider using.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...