Friday, 15 April 2016

calculus - The Intergral of $sin^4x$ without using reduction formula




So I've been trying to compute $$\int\sin^4(x)\mathrm{d}x$$ and everywhere they use the reduction formula which we haven't learned yet so I've been wondering if theres another way to do it? Thanks in advance.


Answer



Performing integration by parts,




$\begin{align} \int_0^x\sin^2 t\,dt&=\Big[-\cos t\sin t\Big]_0^x+\int_0^x\cos^2 t\,dt\\
&=-\cos x\sin x+\int_0^x(1-\sin^2 t)\,dt\\
&=-\cos x\sin x+\int_0^x 1\,dt-\int_0^x \sin^2 t\,dt\\
&=-\cos x\sin x+x-\int_0^x \sin^2 t\,dt\\
\end{align}$



Therefore,



$\displaystyle \int_0^x \sin^2 t\,dt=-\frac{1}{2}\cos x\sin x+\frac{1}{2}x$




$\begin{align} \int_0^x\sin^4 t\,dt&=\int_0^x(1-\cos^2)\sin^2 t\,dt
\\
&=\int_0^x\sin^2 t\,dt-\int_0^x \cos^2 t\sin^2 t\,dt\\
&=-\frac{1}{2}\cos x\sin x+\frac{1}{2}x-\int_0^x \cos^2 t\sin^2 t\,dt\\
\end{align}$



Since, for $t$ real,



$\sin(2t)=2\sin t\cos t$




then,



$\begin{align}
\int_0^x\sin^4 t\,dt&=-\frac{1}{2}\cos x\sin x+\frac{1}{2}x-\frac{1}{4}\int_0^x \sin^2(2t)\,dt\\
\end{align}$



In the latter integral perform the change of variable $y=2t$,



$\begin{align}
\int_0^x\sin^4 t\,dt&=-\frac{1}{2}\cos x\sin x+\frac{1}{2}x-\frac{1}{8}\int_0^{2x} \sin^2(y)\,dy\\

&=-\frac{1}{2}\cos x\sin x+\frac{1}{2}x-\frac{1}{8}\left(-\frac{1}{2}\cos (2x)\sin(2x)+\frac{1}{2}\times 2x\right)\\
&=-\frac{1}{4}\sin(2x)+\frac{1}{2}x+\frac{1}{32}\sin(4x)-\frac{1}{8}x\\
&=-\frac{1}{4}\sin(2x)+\frac{3}{8}x+\frac{1}{32}\sin(4x)\\
\end{align}$



Therefore,



$\displaystyle \boxed{\int \sin^4 x\,dx=\frac{3}{8}x+\frac{1}{32}\sin(4x)-\frac{1}{4}\sin(2x)+C}$



($C$ a real constant)



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...