I know the principle of mathematical induction. The only thing that causes my confusion is that we suppose a statement is true for $n=k$ then we prove the statement is also true for $n=k+1$ but how can we suppose $n=k$ to be true? What if a statement is true for $n=k+1$ and is not true for $n=k$? Does $k$ mean to be starting from $1$ or $2$ if in the base case we prove the statement to be valid for $n=1$? Please help me with this confusion.
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment