Tuesday, 19 April 2016

Can some one explain to me what is going on here - power of complex number



So here is the question and the work to solve it, but I have no idea how one knows to do the first step or what the first step is...



$$ \begin{align}
(6-i\sqrt{12})^{12} &= \left[\sqrt{48}\left(\cos\left(\frac{\pi}{6}\right) - i\sin\left(\frac{\pi}{6}\right)\right)\right]^{12}\\

&= (\sqrt{48})^{12} \left[\cos\left(\frac{12\pi}{6}\right) - i\sin\left(\frac{12\pi}{6}\right)\right]\\
&=48^6
\end{align}
$$


Answer



Step 1 Write your number in polar coordinates, i.e. $z=r(\cos t+i\sin t)$.



Step 2 Use De Moivre's theorem, that $(\cos t+i\sin t)^n=\cos nt+i\sin nt$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...