Monday, 11 April 2016

elementary number theory - Prove that $2^{4n}+1$ cannot be a prime if $3|n$



$2^{4n}+1$ cannot be a prime if $3|n$ and $n>0$



My Try:

$$2^{12k}+1\equiv (-1)^{3k}+1 \equiv0\pmod{17}$$
So it divisible by $17$ for odd $k$. But how to complete the proof?


Answer



Hint: $$ 16^{3k} +1 = (16^k+1)(16^{2k}-16^k+1).$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...