Wednesday, 27 April 2016

How do these two summations equate?



Apparently, the summation

$$
\sum_{j = i + 1}^n \frac{1}{j - i + 1}
$$
is equal to the summation
$$
\sum_{k=1}^{n - i} \frac{1}{k + 1}
$$
I don't grasp the intuition behind why.


Answer



Set $k=j-i$ so when $j=i+1$ then $j-i=1$ so $k=1$. Now when $j=n$ we have $k=j-i=n-i$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...