Sunday 17 April 2016

elementary number theory - Prove $ sqrt{2k}$ is irrational where $ k$ is an odd integer.

Question:



Prove $ \sqrt{2k}$ is irrational where $ k$ is an odd integer.



My attempt:




Proof by contradiction:



Now, assume $ \sqrt{2k}$ is rational. Then, $ \sqrt{2k} = \frac{a}{b}$ where $a,b \in Z$, $b$ not equal $0$ and $a,b$ have no common factors.



$ \sqrt{2k} = \frac{a}{b} \implies 2k = \frac{a^{2}}{b^{2}} \implies (b^{2})(2k) = a^{2} \implies 2|a^{2} \implies 2|a, \ since \ 2 \ is\ prime \implies \exists c \in Z$ such that $ a = 2c$



Then, $ (2k)(b^{2}) = a^{2} \implies (2k)(b^{2}) = 4c^{2} \implies kb^{2} = 2c^{2} \implies 2|kb^{2} \implies 2 | b^{2} \implies 2|b$, since $2$ is prime.



So, $ 2|a$ and $ 2|b$ , a contradiction.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...