Wednesday, 29 June 2016

algebra precalculus - Evaluate $lim limits_{nto infty }sin^2 (pi sqrt{(n!)^2-(n!)})$




Evaluate $$\lim \limits_{n\to \infty }\sin^2 \left(\pi \sqrt{(n!)^2-(n!)}\right)$$





I tried it by Stirling's Approximation
$$n! \approx \sqrt{2\pi n}.n^n e^{-n}$$
but it leads us to nowhere.



Any hint will be of great help.


Answer



$$\sin (\pi \sqrt{(n!)^2 -n!} )=\sin (\pi \sqrt{(n!)^2 -n!} -\pi\cdot n! )=\sin \left(\pi \frac{-n!}{\sqrt{(n!)^2 -n!} +n!}\right)=\sin \left(\pi \frac{-1}{\sqrt{1 -\frac{1}{n!}} +1}\right)\to -\sin\frac{\pi}{2} =-1$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...