Wednesday, 29 June 2016

calculus - What will be the value of $int_gamma xcdot n(x) , ds(x).$





Let $x=(x,y)\in \mathbb R^2$, $n(x)$ denote the unit outward normal to the ellipse $\gamma$ whose equation is given by $\frac{x^2} 4 +\frac{y^2} 9 = 1$ at the point $x$ on it.



What will be the value of $\displaystyle\int_{\gamma}x\cdot n(x)\,ds(x)\text{ ?}$



Answer



Hint. Use the planar version of the Divergence Theorem:
$$\int_{\partial D} (v_1,v_2) \cdot n \, ds=\int_D \left(\frac{\partial v_1}{\partial x} +\frac{\partial v_2}{\partial y} \right)\, dxdy.$$
In particular take a look to this example.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...