Sunday, 5 June 2016

Find the value of complex expression $left(frac{sqrt{3}+i}{2}right)^{69}$




Find the value of




$$\left(\dfrac{\sqrt{3}+i}{2}\right)^{69}.\DeclareMathOperator{\cis}{cis}$$




I tried to solve this complex expression by converting it into polar form.
I expressed it in polar form $r\cis(t)$ from rectangular form $x+iy$ where $\cis(t) = \cos(t) + i\sin(t)$.
But I am unable to solve further due to the exponent of 69!


Answer




$$\left(\dfrac{\sqrt{3}+i}{2}\right)^{69}=\left(\dfrac{\sqrt{3}}{2}+\dfrac{1}{2}i\right)^{69}=(\cos\dfrac{\pi}{6}+i\sin\dfrac{\pi}{6})^{69}=\cos\dfrac{69\pi}{6}+i\sin\dfrac{69\pi}{6}=-i$$
by De Moivre's formula.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...