I saw in a paper by @Jack D'aurizio the following integral
I=\int_0^{\pi/2}\log^2(\cos^2x)\mathrm{d}x=\frac{\pi^3}6+2\pi\log^2(2)
Below is my attempt.
I=4\int_0^{\pi/2}\log^2(\cos x)\mathrm{d}x
Then we define
F(a)=\int_0^{\pi/2}\log^2(a\cos x)\mathrm{d}x
So we have
F'(a)=\frac2a\int_0^{\pi/2}\log(a\cos x)\mathrm{d}x
Which I do not know how to compute. How do I proceed? Thanks.
Answer
Let I(a)=\int_0^{\frac {\pi}{2}} (\cos^2 x)^a dx
Hence we need I''(0).
Now recalling the definition of Beta function we get I(a)=\frac 12 B\left(a+\frac 12 ,\frac 12\right)=\frac {\sqrt {\pi}}{2}\frac {\Gamma\left(a+\frac 12\right)}{\Gamma(a+1)}
Hence we have I''(a) =\frac {\sqrt {\pi}}{2}\frac {\Gamma\left(a+\frac 12\right)}{\Gamma(a+1)}\left(\left[\psi^{(0)}\left(a+\frac 12 \right)-\psi^{(0)}(a+1)\right]^2 +\psi^{(1)}\left(a+\frac 12 \right)-\psi^{(1)}(a+1)\right)
Substituting a=0 in above formula yields the answer.
No comments:
Post a Comment