show that
$$\int_{0}^{\infty} \frac {\sin^3(x)}{x^3}dx=\frac{3\pi}{8}$$
using different ways
thanks for all
Answer
Let $$f(y) = \int_{0}^{\infty} \frac{\sin^3{yx}}{x^3} \mathrm{d}x$$
Then,
$$f'(y) = 3\int_{0}^{\infty} \frac{\sin^2{yx}\cos{yx}}{x^2} \mathrm{d}x = \frac{3}{4}\int_{0}^{\infty} \frac{\cos{yx} - \cos{3yx}}{x^2} \mathrm{d}x$$
$$f''(y) = \frac{3}{4}\int_{0}^{\infty} \frac{-\sin{yx} + 3\sin{3yx}}{x} \mathrm{d}x$$
Therefore,
$$f''(y) = \frac{9}{4} \int_{0}^{\infty} \frac{\sin{3yx}}{x} \mathrm{d}x - \frac{3}{4} \int_{0}^{\infty} \frac{\sin{yx}}{x} \mathrm{d}x$$
Now, it is quite easy to prove that $$\int_{0}^{\infty} \frac{\sin{ax}}{x} \mathrm{d}x = \frac{\pi}{2}\mathop{\mathrm{signum}}{a}$$
Therefore,
$$f''(y) = \frac{9\pi}{8} \mathop{\mathrm{signum}}{y} - \frac{3\pi}{8} \mathop{\mathrm{signum}}{y} = \frac{3\pi}{4}\mathop{\mathrm{signum}}{y}$$
Then,
$$f'(y) = \frac{3\pi}{4} |y| + C$$
Note that, $f'(0) = 0$, therefore, $C = 0$.
$$f(y) = \frac{3\pi}{8} y^2 \mathop{\mathrm{signum}}{y} + D$$
Again, $f(0) = 0$, therefore, $D = 0$.
Hence, $$f(1) = \int_{0}^{\infty} \frac{\sin^3{x}}{x^3} = \frac{3\pi}{8}$$
No comments:
Post a Comment