Monday, 6 June 2016

Arithmetic of integers: divisibility, modular congruence.

Show that $70$ divide $101^{6n} - 1$ for all $n$ natural numbers.



I tried to show that $101^{6n}$$ \equiv 1$ mod $70$.



Thanks for all. I got it.



Note that $70$ $=$ $7$.$5$.$2$




As $101^{ϕ(7)}$ $\equiv 1$ mod $7$, so $101^{6n}$ $\equiv 1$ mod $7$ (Euler Theorem)



and $101^{ϕ(2)}$ $\equiv 1$ mod $2$, so $101^{6n}$ $\equiv 1$ mod $2$ (Euler Theorem)



and $101$ $\equiv 1$ mod $5$, so $101^{6n}$ $\equiv 1$ mod $5$



Therefore, $101^{6n}$ $\equiv 1$ mod $70$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...