∣n√an+bn+cn−c∣<∣n√an+n√bn+n√cn−c∣ doesn't get me anywhere.
ln((an+bn+cn)1/n)=1nln(an+bn+cn)=1nln(cn(ancn+bncn+1))=1n(ln(cn)+ln(ancn+bncn+1))≤1n(ln(cn)+ln(3))=1n(n⋅ln(c)+ln(3))
∣ln(n√an+bn+cn−ln(c)∣≤∣1n∣∣(n⋅ln(c)+ln(3))−n⋅ln(c)∣=∣(ln(c)+ln(3)n)−ln(c)∣
let ϵ>0
choose N∈N such that N>1ϵ then ∀n>N⟹∣(ln(c)+ln(3)n)−ln(c)∣<ϵ
No comments:
Post a Comment