Monday, 20 June 2016

trigonometry - Use an expression for fracsin(5theta)sin(theta) to find the roots of the equation x43x2+1=0 in trigonometric form





Question: Use an expression for sin(5θ)sin(θ) , (θkπ) , k an integer to find the roots of the equation x43x2+1=0 in trigonometric form?









What I have done



By using demovires theorem and expanding



cis(5θ)=(cos(θ)+isin(θ))5



cos(5θ)+isin(5θ)=cos5(θ)10cos3(θ)sin2(θ)+5cos(θ)sin4(θ)+i(5cos4(θ)sin(θ)10cos2(θ)sin3(θ)+sin5(θ)



Considering only Im(z)=sin(5θ)




sin(5θ)=5cos4(θ)sin(θ)10cos2(θ)sin3(θ)+sin5(θ)





\frac{\sin(5\theta)}{\sin(\theta)} = 5\cos^4(\theta) -10\cos^2(\theta)\sin^2(\theta) + \sin^4(\theta)



How should I proceed , I'm stuck trying to incorporate what I got into the equation..


Answer



HINT:




Using Prosthaphaeresis Formula,



\sin5x-\sin x=2\sin2x\cos3x=4\sin x\cos x\cos3x



If \sin x\ne0,
\dfrac{\sin5x}{\sin x}-1=4\cos x\cos3x=4\cos x(4\cos^3x-3\cos x)=(4\cos^2x)^2-3(4\cos^2x)



OR replace \sin^2x with 1-\cos^2x in your 5\cos^4x-10\cos^2x\sin^2x + \sin^4x




Now if \sin5x=0,5x=n\pi where n is any integer



x=\dfrac{n\pi}5 where n\equiv0,\pm1,\pm2\pmod5



So, the roots of
\dfrac{\sin5x}{\sin x}=0\implies x=\dfrac{n\pi}5 where n\equiv\pm1,\pm2\pmod5



But \dfrac{\sin5x}{\sin x}=(4\cos^2x)^2-3(4\cos^2x)+1


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...