Monday, 24 April 2017

calculus - what is $mathop {lim }limits_{n to infty } {2^{n/{{log }_2}n}}frac{{{{({{log }_2}n)}^4}}}{{{n^3}}}$?



what is the limitation of this weird expression?
$$\mathop {\lim }\limits_{n \to \infty } {2^{n/{{\log }_2}n}}\frac{{{{({{\log }_2}n)}^4}}}{{{n^3}}}$$
I've worked on it for the whole night but I can't figure it out:(



Or no limitation exists at all?


Answer



HINT: Logarithms are meaningless. And the limit od $2^n/n^3$ is...


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...