Sunday, 30 April 2017

algebra precalculus - If $tan (pi cos theta) =cot (pi sin theta) $ then find the value of $cosleft (theta -frac{pi}{4}right)$




If $\tan (\pi \cos \theta) =\cot (\pi \sin \theta) $ then find the value of $\cos \left(\theta -\frac{\pi}{4}\right).$



I could not get any idea to solve. However I tried by using $\theta =0^\circ $. But could not get the answer.


Answer



Hint -



$\tan (\pi \cos \theta) =\cot (\pi \sin \theta)$



$\tan(\pi \cos \theta) =\tan (\frac{\pi}2 - \pi \sin \theta)$




$\pi \cos \theta =\frac{\pi}2 - \pi \sin \theta$



$\cos \theta = \frac 12 - \sin \theta$



$\sin \theta + \cos \theta = \frac 12$



Now we have,



$\cos\left(\theta-\frac{\pi}{4}\right)$




$= \cos\theta \cos \frac{\pi}4 +\sin\theta \sin \frac{\pi}4$



$= \cos\theta \frac 1{\sqrt{2}} + \sin\theta \frac 1{\sqrt{2}}$



$= \frac1{\sqrt 2} \left( \cos\theta +\sin\theta \right)$



$ = \frac 1{\sqrt2} \left(\frac 12\right)$



$= \frac 1{2\sqrt2}$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...