Monday, 1 May 2017

Proof by induction with summation

I have this math problem that I am stuck on.




Prove by induction on $n$ that
$$\sum_{j=1}^{2^n}{\frac{1}{j}>\frac{n}{2}}$$




What I have so far is check for $n=0$ (base case) $\sum_{j=1}^{1}{\frac{1}{j}} = 1 > 0$.



Then I assume $\sum_{j=1}^{2^n}{\frac{1}{j}>\frac{n}{2}}$ is true for all $n\ge 0$.




I then show it is true for $n+1$



$$\sum_{j=1}^{2^{n+1}}{\frac{1}{j}>\frac{n+1}{2}}$$
$$=\sum_{j=1}^{2^{n}}{\frac{1}{j} + \sum_{j=2^n}^{2^{n+1}}{\frac{1}{j}} >\frac{n+1}{2}}$$



$$=\frac{n}{2} + \sum_{j=2^n}^{2^{n+1}}{\frac{1}{j}} >\frac{n+1}{2}$$



$$= \sum_{j=2^n}^{2^{n+1}}{\frac{1}{j}} > \frac{1}{2}$$




I'm stuck here. thanks.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...