I have this math problem that I am stuck on.
Prove by induction on $n$ that
$$\sum_{j=1}^{2^n}{\frac{1}{j}>\frac{n}{2}}$$
What I have so far is check for $n=0$ (base case) $\sum_{j=1}^{1}{\frac{1}{j}} = 1 > 0$.
Then I assume $\sum_{j=1}^{2^n}{\frac{1}{j}>\frac{n}{2}}$ is true for all $n\ge 0$.
I then show it is true for $n+1$
$$\sum_{j=1}^{2^{n+1}}{\frac{1}{j}>\frac{n+1}{2}}$$
$$=\sum_{j=1}^{2^{n}}{\frac{1}{j} + \sum_{j=2^n}^{2^{n+1}}{\frac{1}{j}} >\frac{n+1}{2}}$$
$$=\frac{n}{2} + \sum_{j=2^n}^{2^{n+1}}{\frac{1}{j}} >\frac{n+1}{2}$$
$$= \sum_{j=2^n}^{2^{n+1}}{\frac{1}{j}} > \frac{1}{2}$$
I'm stuck here. thanks.
No comments:
Post a Comment