Monday, 22 July 2013

algebra precalculus - Prove that $frac{2sin(a)+sec(a)}{1+tan(a)}$ = $frac{1+tan(a)}{sec(a)}$





Prove that $\frac{2\sin(a)+\sec(a)}{1+\tan(a)}$ = $\frac{1+\tan(a)}{\sec(a)}$






My attempt using the LHS



$$\frac{2\sin(a)+\sec(a)}{1+\tan(a)}$$



$$ \frac{2\sin(a)+\frac{1}{\cos(a)}}{1+\frac{\sin(a)}{\cos(a)}} $$



$$ \frac{\frac{2\sin(a)+1}{\cos{a}}}{\frac{\cos(a)+\sin(a)}{\cos(a)}} $$



$$ {\frac{2\sin(a)+1}{\cos{a}}} * {\frac{\cos(a)}{\cos(a)+sin(a)}} $$




$$ \frac{2\sin(a)+1}{\cos(a)+sin(a)} $$



Now I am stuck...


Answer



Hint: What does $(\cos a+ \sin a)^2$ simplify to?


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...