Prove that $\frac{2\sin(a)+\sec(a)}{1+\tan(a)}$ = $\frac{1+\tan(a)}{\sec(a)}$
My attempt using the LHS
$$\frac{2\sin(a)+\sec(a)}{1+\tan(a)}$$
$$ \frac{2\sin(a)+\frac{1}{\cos(a)}}{1+\frac{\sin(a)}{\cos(a)}} $$
$$ \frac{\frac{2\sin(a)+1}{\cos{a}}}{\frac{\cos(a)+\sin(a)}{\cos(a)}} $$
$$ {\frac{2\sin(a)+1}{\cos{a}}} * {\frac{\cos(a)}{\cos(a)+sin(a)}} $$
$$ \frac{2\sin(a)+1}{\cos(a)+sin(a)} $$
Now I am stuck...
Answer
Hint: What does $(\cos a+ \sin a)^2$ simplify to?
No comments:
Post a Comment