Friday, 12 July 2013

limits - How to answer the question from Calculus by Michael Spivak Chapter 5 Problem 14


  1. Prove that if $\lim\limits_{x\rightarrow0}{\frac{f(x)}x}=l$ and $b\neq 0$, then $\lim\limits_{x\rightarrow0}{\frac{f(bx)}x}=bl$. Hint: Write $\frac{f(bx)}x=b\frac{f(bx)}{bx}$

  2. What happens if $b=0$?

  3. Part 1 enables us to find $\lim\limits_{x\rightarrow0}{\frac{\sin{2x}}{x}}$ in terms of $\lim\limits_{x\to0}\frac{\sin x}x$. Find this limit in another way.




This is a question from Calculus by Michael Spivak Chapter 5 Problem 14.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...