Monday, 22 July 2013

calculus - Integrating $frac{x^k }{1+cosh(x)}$



In the course of solving a certain problem, I've had to evaluate integrals of the form:



$$\int_0^\infty \frac{x^k}{1+\cosh(x)} \mathrm{d}x $$



for several values of k. I've noticed that that, for k a positive integer other than 1, the result is seemingly always a dyadic rational multiple of $\zeta(k)$, which is not particularly surprising given some of the identities for $\zeta$ (k=7 is the first noninteger value).



However, I've been unable to find a nice way to evaluate this integral. I'm reasonably sure there's a way to change this expression into $\int \frac{x^{k-1}}{e^x+1} \mathrm{d}x$, but all the things I tried didn't work. Integration by parts also got too messy quickly, and Mathematica couldn't solve it (though it could calculate for a particular value of k very easily).




So I'm looking for a simple way to evaluate the above integral.


Answer



Just note that
$$ \frac{1}{1 + \cosh x} = \frac{2e^{-x}}{(1 + e^{-x})^2} = 2 \frac{d}{dx} \frac{1}{1 + e^{-x}} = 2 \sum_{n = 1}^{\infty} (-1)^{n-1} n e^{-n x}.$$
Thus we have
$$ \begin{eqnarray*}\int_{0}^{\infty} \frac{x^k}{1 + \cosh x} \, dx
& = & 2 \sum_{n = 1}^{\infty} (-1)^{n-1} n \int_{0}^{\infty} x^{k} e^{-n x} \, dx \\
& = & 2 \sum_{n = 1}^{\infty} (-1)^{n-1} \frac{\Gamma(k+1)}{n^k} \\
& = & 2 (1 - 2^{1-k}) \zeta(k) \Gamma(k+1).

\end{eqnarray*}$$
This formula works for all $k > -1$, where we understand that the Dirichlet eta function $\eta(s) = (1 - 2^{1-s})\zeta(s)$ is defined, by analytic continuation, for all $s \in \mathbb{C}$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...