Tuesday, 30 July 2013

Limit without Taylor expansion

$\lim_{x\to0}\frac{\sin x - x}{x^3}$



I know it can be easily done by using Taylor expansion of sine function and L'Hopital. However, can we come up with a way to solve the limits using properties.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...