$\lim_{x\to0}\frac{\sin x - x}{x^3}$
I know it can be easily done by using Taylor expansion of sine function and L'Hopital. However, can we come up with a way to solve the limits using properties.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment