Tuesday, 30 July 2013

trigonometry - Computing $sum_{k=0}^n{2nchoose 2k}(-1)^ksin^{2k}theta cos^{2n-2k}theta$ using Euler's formula


Compute the following sum by using Euler's formula, $
e^{i \theta} = \cos \theta + i \sin \theta$
,
$$cos^{2n}\theta-{2n\choose 2}cos^{2n-2}\theta\ sin^2\theta\ +...+(-1)^{n-1}{2n\choose 2n-2}cos^2\theta\ sin^{2n-2}\theta\ +(-1)^nsin^{2n}\theta$$





I have tried to rewrite the expression as:



$$\sum_{k=0}^n{2n\choose 2k}(-1)^ksin^{2k}\theta\ cos^{2n-2k}\theta$$



But I have no certain idea about how to continue. Could you give me some hints? Thanks!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...