Tuesday, 30 July 2013

trigonometry - Computing sumnk=02nchoose2k(1)ksin2kthetacos2n2ktheta using Euler's formula


Compute the following sum by using Euler's formula, eiθ=cosθ+isinθ,
cos^{2n}\theta-{2n\choose 2}cos^{2n-2}\theta\ sin^2\theta\ +...+(-1)^{n-1}{2n\choose 2n-2}cos^2\theta\ sin^{2n-2}\theta\ +(-1)^nsin^{2n}\theta





I have tried to rewrite the expression as:



\sum_{k=0}^n{2n\choose 2k}(-1)^ksin^{2k}\theta\ cos^{2n-2k}\theta



But I have no certain idea about how to continue. Could you give me some hints? Thanks!

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...