Sunday, 21 July 2013

real analysis - limit of $left( 1-frac{1}{n}right)^{n}$

limit of $$\left( 1-\frac{1}{n}\right)^{n}$$



is said to be $\frac{1}{e}$ but how do we actually prove it?




I'm trying to use squeeze theorem



$$\frac{1}{e}=\lim\limits_{n\to \infty}\left(1-\frac{1}{n+1}\right)^{n}>\lim\limits_{n\to \infty}\left( 1-\frac{1}{n} \right)^{n} > ??$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...