Is there any way to show that
∞∑k=−∞(−1)ka+k=1a+∞∑k=1(−1)k(1a−k+1a+k)=πsinπa
Where 0<a=n+1m<1
The infinite series is equal to
∞∫−∞eatet+1dt
To get to the result, I split the integral at x=0 and use the convergent series in (0,∞) and (−∞,0) respectively:
11+et=∞∑k=0(−1)ke−(k+1)t
11+et=∞∑k=0(−1)kekt
Since 0<a<1
limt→0e(k+a)tk+a−limt→−∞e(k+a)tk+a=1k+alimt→∞e(a−k−1)tk+a−limt→0e(a−k−1)tk+a=−1a−(k+1)
A change in the indices will give the desired series.
Although I don't mind direct solutions from tables and other sources, I prefer an elaborated answer.
Here's the solution in terms of \psi(x). By separating even and odd indices we can get
\eqalign{ & \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \sum\limits_{k = 0}^\infty {\frac{1}{{a + 2k}}} - \sum\limits_{k = 0}^\infty {\frac{1}{{a + 2k + 1}}} \cr & \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a - k}}} = \sum\limits_{k = 0}^\infty {\frac{1}{{a - 2k}}} - \sum\limits_{k = 0}^\infty {\frac{1}{{a - 2k - 1}}} \cr}
which gives
\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \frac{1}{2}\psi \left( {\frac{{a + 1}}{2}} \right) - \frac{1}{2}\psi \left( {\frac{a}{2}} \right)
\sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a - k}}} = \frac{1}{2}\psi \left( {1 - \frac{a}{2}} \right) - \frac{1}{2}\psi \left( {1 - \frac{{a + 1}}{2}} \right) + \frac{1}{a}
Then
\eqalign{ & \sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} + \sum\limits_{k = 0}^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a - k}}} - \frac{1}{a} = \cr & = \left\{ {\frac{1}{2}\psi \left( {1 - \frac{a}{2}} \right) - \frac{1}{2}\psi \left( {\frac{a}{2}} \right)} \right\} - \left\{ {\frac{1}{2}\psi \left( {1 - \frac{{a + 1}}{2}} \right) - \frac{1}{2}\psi \left( {\frac{{a + 1}}{2}} \right)} \right\} \cr}
But using the reflection formula one has
\eqalign{ & \frac{1}{2}\psi \left( {1 - \frac{a}{2}} \right) - \frac{1}{2}\psi \left( {\frac{a}{2}} \right) = \frac{\pi }{2}\cot \frac{{\pi a}}{2} \cr & \frac{1}{2}\psi \left( {1 - \frac{{a + 1}}{2}} \right) - \frac{1}{2}\psi \left( {\frac{{a + 1}}{2}} \right) = \frac{\pi }{2}\cot \frac{{\pi \left( {a + 1} \right)}}{2} = - \frac{\pi }{2}\tan \frac{{\pi a}}{2} \cr}
So the series become
\eqalign{ & \sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \frac{\pi }{2}\left\{ {\cot \frac{{\pi a}}{2} + \tan \frac{{\pi a}}{2}} \right\} \cr & \sum\limits_{k = - \infty }^\infty {\frac{{{{\left( { - 1} \right)}^k}}}{{a + k}}} = \pi \csc \pi a \cr}
The last being an application of a trigonometric identity.
Answer
EDIT: The classical demonstration of this is obtained by expanding in Fourier series the function \cos(zx) with x\in(-\pi,\pi).
Let's detail Smirnov's proof (in "Course of Higher Mathematics 2 VI.1 Fourier series") :
\cos(zx) is an even function of x so that the \sin(kx) terms disappear and the Fourier expansion is given by :
\cos(zx)=\frac{a_0}2+\sum_{k=1}^{\infty} a_k\cdot \cos(kx),\ \text{with}\ \ a_k=\frac2{\pi} \int_0^{\pi} \cos(zx)\cos(kx) dx
Integration is easy and a_0=\frac2{\pi}\int_0^{\pi} \cos(zx) dx= \frac{2\sin(\pi z)}{\pi z} while
a_k= \frac2{\pi}\int_0^{\pi} \cos(zx) \cos(kx) dx=\frac1{\pi}\left[\frac{\sin((z+k)x)}{z+k}+\frac{\sin((z-k)x)}{z-k}\right]_0^{\pi}=(-1)^k\frac{2z\sin(\pi z)}{\pi(z^2-k^2)}
so that for -\pi \le x \le \pi :
\cos(zx)=\frac{2z\sin(\pi z)}{\pi}\left[\frac1{2z^2}+\frac{\cos(1x)}{1^2-z^2}-\frac{\cos(2x)}{2^2-z^2}+\frac{\cos(3x)}{3^2-z^2}-\cdots\right]
Setting x=0 returns your equality :
\frac1{\sin(\pi z)}=\frac{2z}{\pi}\left[\frac1{2z^2}-\sum_{k=1}^{\infty}\frac{(-1)^k}{k^2-z^2}\right]
while x=\pi returns the \mathrm{cotg} formula :
\cot(\pi z)=\frac1{\pi}\left[\frac1{z}-\sum_{k=1}^{\infty}\frac{2z}{k^2-z^2}\right]
(Euler used this one to find closed forms of \zeta(2n))
The \cot\ formula is linked to \Psi via the Reflection formula :
\Psi(1-x)-\Psi(x)=\pi\cot(\pi x)
The \sin formula is linked to \Gamma via Euler's reflection formula :
\Gamma(1-x)\cdot\Gamma(x)=\frac{\pi}{\sin(\pi x)}
No comments:
Post a Comment