Let $g: \mathbf R \to \mathbf R$ be a function which is not identically zero and which satisfies the equation
$$
g(x+y)=g(x)g(y) \quad\text{for all } x,y \in \mathbf{R}.
$$
Show that $g(x)\gt0$ for all $x \in \mathbf{R}$.
Sunday, 14 July 2013
functional equations - A non-zero function satisfying $g(x+y) = g(x)g(y)$ must be positive everywhere
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment