Saturday, 13 July 2013

algebra precalculus - Proving an identity involving terms in arithmetic progression.



If $a_1,\ldots,a_n$ are in arithmetic progression and $a_i\gt 0$ for all $i$, then how to prove the following two identities:




$ (1)\large \frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \cdots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} = \frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$



$(2) \large\frac{1}{a_1 \cdot a_n} + \frac{1}{a_2 \cdot a_{n-1}} + \frac{1}{a_3 \cdot a_{n-2}}+ \cdots + \frac{1}{a_n \cdot a_1} = \frac{2}{a_1 + a_n} \biggl( \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} \biggr)$




Answer



This question is now old enough for some more complete answers.



For number 1:



$$\sum_{k=1}^{n-1} \frac{1}{ \sqrt{a_k}+ \sqrt{a_{k+1}}} =
\sum_{k=1}^{n-1} \frac{\sqrt{a_{k+1}} - \sqrt{a_k}}{d}$$
where $d$ is the common difference,
$$ = \frac{1}{d} \left( \sqrt{a_n} - \sqrt{a_1} \right)

= \frac{a_n - a_1}{d(\sqrt{a_n} + \sqrt{a_1})}$$
$$= \frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}.$$



And for number 2:



$$ S = 2 \sum_{k=1}^n \frac{1}{a_k} =
\left( \frac{1}{a_1} + \frac{1}{a_n} \right) +
\left( \frac{1}{a_2} + \frac{1}{a_{n-1}} \right) + \cdots +
\left( \frac{1}{a_n} + \frac{1}{a_1} \right)$$

$$ = \sum_{k=1}^n \frac{a_{n-k+1}+ a_k}{a_k a_{n-k+1}}.$$



Now $ a_{n-k+1}+ a_k = 2a_1 + (n-1)d = a_1 + a_n$ and so



$$ S = (a_1+a_n) \sum_{k=1}^n \frac{1}{a_k a_{n-k+1}}$$



from which the result follows.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...