Monday, 7 October 2013

calculus - How do I find this limit: $lim_{x to infty} sqrt{x^4-3x^2-1}-x^2$




$$

\lim_{x \to \infty} \sqrt{x^4-3x^2-1}-x^2
$$



The answer is
$$
\frac{-3}{2}
$$
according to Wolfram alpha.


Answer



I would consider $$\lim_{x \to \infty} \sqrt{x^4-3x^2-1}-x^2$$

as $$\lim_{x \to \infty} \dfrac{\sqrt{x^4-3x^2-1}-x^2}{1}$$



Then multiply $\sqrt{x^4-3x^2-1}+x^2$ top and bottom to get rid of the ridiculous looking square root sign on the top. Then bingo!


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...