$$
\lim_{x \to \infty} \sqrt{x^4-3x^2-1}-x^2
$$
The answer is
$$
\frac{-3}{2}
$$
according to Wolfram alpha.
Answer
I would consider $$\lim_{x \to \infty} \sqrt{x^4-3x^2-1}-x^2$$
as $$\lim_{x \to \infty} \dfrac{\sqrt{x^4-3x^2-1}-x^2}{1}$$
Then multiply $\sqrt{x^4-3x^2-1}+x^2$ top and bottom to get rid of the ridiculous looking square root sign on the top. Then bingo!
No comments:
Post a Comment