Evaluate the integral $$ \int_0^\infty \left( \frac{1}{3}\ln\left(\frac{x+1}{\sqrt{x^2-x+1}}\right)+\frac{1}{\sqrt 3}\arctan \left(\frac{2x-1}{\sqrt 3} \right) \right) dx $$
I have read about improper integrals, and seen that I should do just like I would do with a and b, only that now, when I have $\infty$ I should take the limit. But I do not know hot to evaluate the limit of $$\ln\left(\frac{x+1}{\sqrt{x^2-x+1}}\right)$$ and $$\frac{1}{\sqrt 3}\arctan \left(\frac{2x-1}{\sqrt 3} \right)$$
Answer
As $x\to\infty$, $\log\left(\frac{x+1}{\sqrt{x^2-x+1}}\right)\to0$. However, $\arctan\left(\frac{2x-1}{\sqrt3}\right)\to\frac\pi2$. Thus, the integrand tends to $\frac\pi{2\sqrt3}$, so the integral cannot converge.
To compute the limits:
$$
\lim_{x\to\infty}\log\left(\frac{x+1}{\sqrt{x^2-x+1}}\right)=\log\left(\lim_{x\to\infty}\frac{1+1/x}{\sqrt{1-1/x+1/x^2}}\right)
$$
and substitute $u=\frac{2x-1}{\sqrt3}$ to get
$$
\lim_{x\to\infty}\frac1{\sqrt3}\arctan\left(\frac{2x-1}{\sqrt3}\right)=\frac1{\sqrt3}\lim_{u\to\infty}\arctan(u)
$$
No comments:
Post a Comment