Sunday 16 March 2014

calculus - Integral from $0$ to $infty$ of $frac{1}{3}lnleft(frac{x+1}{sqrt{x^2-x+1}}right)+frac{1}{sqrt 3}arctan left(frac{2x-1}{sqrt 3} right)$




Evaluate the integral $$ \int_0^\infty \left( \frac{1}{3}\ln\left(\frac{x+1}{\sqrt{x^2-x+1}}\right)+\frac{1}{\sqrt 3}\arctan \left(\frac{2x-1}{\sqrt 3} \right) \right) dx $$



I have read about improper integrals, and seen that I should do just like I would do with a and b, only that now, when I have $\infty$ I should take the limit. But I do not know hot to evaluate the limit of $$\ln\left(\frac{x+1}{\sqrt{x^2-x+1}}\right)$$ and $$\frac{1}{\sqrt 3}\arctan \left(\frac{2x-1}{\sqrt 3} \right)$$


Answer



As $x\to\infty$, $\log\left(\frac{x+1}{\sqrt{x^2-x+1}}\right)\to0$. However, $\arctan\left(\frac{2x-1}{\sqrt3}\right)\to\frac\pi2$. Thus, the integrand tends to $\frac\pi{2\sqrt3}$, so the integral cannot converge.






To compute the limits:

$$
\lim_{x\to\infty}\log\left(\frac{x+1}{\sqrt{x^2-x+1}}\right)=\log\left(\lim_{x\to\infty}\frac{1+1/x}{\sqrt{1-1/x+1/x^2}}\right)
$$
and substitute $u=\frac{2x-1}{\sqrt3}$ to get
$$
\lim_{x\to\infty}\frac1{\sqrt3}\arctan\left(\frac{2x-1}{\sqrt3}\right)=\frac1{\sqrt3}\lim_{u\to\infty}\arctan(u)
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...