Sunday 16 March 2014

trigonometry - Prove that $frac{1+sintheta + icostheta}{1+sintheta-icostheta}=sintheta+icostheta.$




Prove that $$\frac{1+\sin\theta + i\cos\theta}{1+\sin\theta-i\cos\theta}=\sin\theta+i\cos\theta.$$



Hence, show that $$(1+\sin\frac{\pi}{5}+i\cos\frac{\pi}{5})^5+i(1+\sin\frac{\pi}{5}-i\cos\frac{\pi}{5})^5=0.$$



In the first part, I tried realising LHS so I got $$LHS=\frac{(1+\sin\theta+i\cos\theta)^2}{(1+\sin\theta)^2+\cos^2\theta}=\frac{1+2\sin\theta+2i\cos\theta+2i\cos\theta\sin\theta+\sin^2\theta+i^2\cos^2\theta}{2+2\sin\theta}.$$



but now I am stuck :( . Any help would be greatly appreciated, thanks!


Answer



I write




$i\cos \theta + \sin \theta = i(\cos \theta -i\sin \theta) = i(\cos (-\theta) + i\sin (-\theta)) = ie^{-i\theta}; \tag 1$



then



$\sin \theta -i\cos \theta = -i(\cos \theta + i\sin \theta) = -ie^{i \theta}; \tag 2$



we have



$(1 + \sin \theta - i\cos \theta)(\sin \theta + i\cos \theta) = (1 - ie^{i \theta})ie^{-i\theta} = ie^{-i\theta} + 1 = 1 + \sin \theta + i\cos \theta, \tag 3$




simply a slightly altered form equivalent to the desired result; some minor re-arrangemens yield



$\dfrac{ 1 + \sin \theta + i\cos \theta}{ 1 + \sin \theta - i\cos \theta } = \dfrac{1 + ie^{-i\theta}}{1 - ie^{i \theta}} = ie^{-i\theta} = \sin \theta + i\cos \theta, \tag 4$



the equation in the form given.



We also wish to show that



$\left (1+\sin\dfrac{\pi}{5}+i\cos\dfrac{\pi}{5} \right )^5+i \left ( 1+\sin\dfrac{\pi}{5}-i\cos\dfrac{\pi}{5} \right )^5=0; \tag 5$




if we set



$\theta = \dfrac{\pi}{5}, \tag 6$



then it follows that



$\left ( \dfrac{ 1 + \sin \theta + i\cos \theta}{ 1 + \sin \theta - i\cos \theta } \right )^5 = (\sin \theta + i \cos \theta)^5$
$= (ie^{-i\theta})^5 = i^5 e^{-i 5 \theta} = ii^4 e^{-i 5(\pi / 5)} = ie^{-i \pi} = -i; \tag 7$




therefore,



$\dfrac{( 1 + \sin \theta + i\cos \theta)^5}{( 1 + \sin \theta - i\cos \theta )^5} = \left ( \dfrac{ 1 + \sin \theta + i\cos \theta}{ 1 + \sin \theta - i\cos \theta } \right )^5 = (\sin \theta + i \cos \theta)^5 = -i, \tag 8$



whence



$( 1 + \sin \theta + i\cos \theta)^5 + i ( 1 + \sin \theta - i\cos \theta )^5 = 0; \tag 9$



if we substitute (6) into this equation we find that in concrete terms




$\left ( 1 + \sin \dfrac{\pi}{5} + i\cos \dfrac{\pi}{5} \right )^5 + i \left ( 1 + \sin \dfrac{\pi}{5} - i\cos \dfrac{\pi}{5} \right )^5 = 0, \tag{10}$



as per request.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...