Sunday, 16 March 2014

trigonometry - Prove that frac1+sintheta+icostheta1+sinthetaicostheta=sintheta+icostheta.




Prove that 1+sinθ+icosθ1+sinθicosθ=sinθ+icosθ.



Hence, show that (1+sinπ5+icosπ5)5+i(1+sinπ5icosπ5)5=0.



In the first part, I tried realising LHS so I got LHS=(1+sinθ+icosθ)2(1+sinθ)2+cos2θ=1+2sinθ+2icosθ+2icosθsinθ+sin2θ+i2cos2θ2+2sinθ.



but now I am stuck :( . Any help would be greatly appreciated, thanks!


Answer



I write




icosθ+sinθ=i(cosθisinθ)=i(cos(θ)+isin(θ))=ieiθ;



then



sinθicosθ=i(cosθ+isinθ)=ieiθ;



we have



(1+sinθicosθ)(sinθ+icosθ)=(1ieiθ)ieiθ=ieiθ+1=1+sinθ+icosθ,




simply a slightly altered form equivalent to the desired result; some minor re-arrangemens yield



1+sinθ+icosθ1+sinθicosθ=1+ieiθ1ieiθ=ieiθ=sinθ+icosθ,



the equation in the form given.



We also wish to show that



(1+sinπ5+icosπ5)5+i(1+sinπ5icosπ5)5=0;




if we set



θ=π5,



then it follows that



(1+sinθ+icosθ1+sinθicosθ)5=(sinθ+icosθ)5
=(ieiθ)5=i5ei5θ=ii4ei5(π/5)=ieiπ=i;




therefore,



(1+sinθ+icosθ)5(1+sinθicosθ)5=(1+sinθ+icosθ1+sinθicosθ)5=(sinθ+icosθ)5=i,



whence



(1+sinθ+icosθ)5+i(1+sinθicosθ)5=0;



if we substitute (6) into this equation we find that in concrete terms




(1+sinπ5+icosπ5)5+i(1+sinπ5icosπ5)5=0,



as per request.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...