Prove that 1+sinθ+icosθ1+sinθ−icosθ=sinθ+icosθ.
Hence, show that (1+sinπ5+icosπ5)5+i(1+sinπ5−icosπ5)5=0.
In the first part, I tried realising LHS so I got LHS=(1+sinθ+icosθ)2(1+sinθ)2+cos2θ=1+2sinθ+2icosθ+2icosθsinθ+sin2θ+i2cos2θ2+2sinθ.
but now I am stuck :( . Any help would be greatly appreciated, thanks!
Answer
I write
icosθ+sinθ=i(cosθ−isinθ)=i(cos(−θ)+isin(−θ))=ie−iθ;
then
sinθ−icosθ=−i(cosθ+isinθ)=−ieiθ;
we have
(1+sinθ−icosθ)(sinθ+icosθ)=(1−ieiθ)ie−iθ=ie−iθ+1=1+sinθ+icosθ,
simply a slightly altered form equivalent to the desired result; some minor re-arrangemens yield
1+sinθ+icosθ1+sinθ−icosθ=1+ie−iθ1−ieiθ=ie−iθ=sinθ+icosθ,
the equation in the form given.
We also wish to show that
(1+sinπ5+icosπ5)5+i(1+sinπ5−icosπ5)5=0;
if we set
θ=π5,
then it follows that
(1+sinθ+icosθ1+sinθ−icosθ)5=(sinθ+icosθ)5
=(ie−iθ)5=i5e−i5θ=ii4e−i5(π/5)=ie−iπ=−i;
therefore,
(1+sinθ+icosθ)5(1+sinθ−icosθ)5=(1+sinθ+icosθ1+sinθ−icosθ)5=(sinθ+icosθ)5=−i,
whence
(1+sinθ+icosθ)5+i(1+sinθ−icosθ)5=0;
if we substitute (6) into this equation we find that in concrete terms
(1+sinπ5+icosπ5)5+i(1+sinπ5−icosπ5)5=0,
as per request.
No comments:
Post a Comment