Sunday, 23 March 2014

factorial - How find the limit of $limlimits_{nto infty }left(n-1right)!$

I have the next limit: $$\lim\limits_{n\to \infty }\left(\sqrt[n]{\left(\frac{n!-1}{n!+1}\right)^{\left(n+1\right)!}}\right)$$



I had done some steps and simplified it to:
$$\lim\limits_{n\to \infty }\left(1-\frac{2}{n!+1}\right)^{(n+1)(n-1)!}=\\
\lim\limits_{n\to \infty }\left(1-\frac{1}{(n(n-1)!+1)\cdot 0.5}\right)^{(n+1)(n-1)!}$$




And my final result is:



$$\lim\limits_{n\to \infty }\left(\frac{1}{e}\right)^{\frac{3n+2+\frac{1}{(n-1)!}}{2}}$$



My question is what happens to $\frac{1}{(\infty -1)!}$? Is it 0?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...