Saturday, 22 March 2014

trigonometry - Prove that $cosfrac {2pi}{7}+ cosfrac {4pi}{7}+ cosfrac {8pi}{7}=-frac{1}{2}$





Prove that
$$\cos\frac {2\pi}{7}+ \cos\frac {4\pi}{7}+ \cos\frac {8\pi}{7}=-\frac{1}{2}$$




My attempt



\begin{align}

\text{LHS}&=\cos\frac{2\pi}7+\cos\frac{4\pi}7+\cos\frac{8\pi}7\\
&=-2\cos\frac{4\pi}7\cos\frac\pi7+2\cos^2\frac{4\pi}7-1\\
&=-2\cos\frac{4\pi}7\left(\cos\frac\pi7-\cos\frac{4\pi}7\right)-1
\end{align}
Now, please help me to complete the proof.


Answer



$cos(2\pi/7)$+$cos(4\pi/7)$+$cos(8\pi/7)$



= $cos(2\pi/7)$+$cos(4\pi/7)$+$cos(6\pi/7)$ (angles add to give $2\pi$, thus one is $2\pi$ minus the other)




At this point, we'll make an observation



$cos(2\pi/7)$$sin(\pi/7)$ = $\frac{sin(3\pi/7) - sin(\pi/7)}{2}$ ..... (A)



$cos(4\pi/7)$$sin(\pi/7)$ = $\frac{sin(5\pi/7) - sin(3\pi/7)}{2}$ ..... (B)



$cos(6\pi/7)$$sin(\pi/7)$ = $\frac{sin(7\pi/7) - sin(5\pi/7)}{2}$ ..... (C)



Now, add (A), (B) and (C) to get




$sin(\pi/7)*(cos(2\pi/7)+cos(4\pi/7)+cos(6\pi/7))$ = $\frac{sin(7\pi/7) - sin(\pi/7)}{2}$ = -$sin(\pi/7)/2$



The $sin(\pi/7)$ cancels out from both sides to give you your answer.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...