Prove that
$$\cos\frac {2\pi}{7}+ \cos\frac {4\pi}{7}+ \cos\frac {8\pi}{7}=-\frac{1}{2}$$
My attempt
\begin{align}
\text{LHS}&=\cos\frac{2\pi}7+\cos\frac{4\pi}7+\cos\frac{8\pi}7\\
&=-2\cos\frac{4\pi}7\cos\frac\pi7+2\cos^2\frac{4\pi}7-1\\
&=-2\cos\frac{4\pi}7\left(\cos\frac\pi7-\cos\frac{4\pi}7\right)-1
\end{align}
Now, please help me to complete the proof.
Answer
$cos(2\pi/7)$+$cos(4\pi/7)$+$cos(8\pi/7)$
= $cos(2\pi/7)$+$cos(4\pi/7)$+$cos(6\pi/7)$ (angles add to give $2\pi$, thus one is $2\pi$ minus the other)
At this point, we'll make an observation
$cos(2\pi/7)$$sin(\pi/7)$ = $\frac{sin(3\pi/7) - sin(\pi/7)}{2}$ ..... (A)
$cos(4\pi/7)$$sin(\pi/7)$ = $\frac{sin(5\pi/7) - sin(3\pi/7)}{2}$ ..... (B)
$cos(6\pi/7)$$sin(\pi/7)$ = $\frac{sin(7\pi/7) - sin(5\pi/7)}{2}$ ..... (C)
Now, add (A), (B) and (C) to get
$sin(\pi/7)*(cos(2\pi/7)+cos(4\pi/7)+cos(6\pi/7))$ = $\frac{sin(7\pi/7) - sin(\pi/7)}{2}$ = -$sin(\pi/7)/2$
The $sin(\pi/7)$ cancels out from both sides to give you your answer.
No comments:
Post a Comment