Tuesday, 25 March 2014

linear algebra - Find the determinant of $N times N$ matrix



I have the following $N \times N$ matrix.
\begin{vmatrix}
0 & 1 & 1 & \ldots & 1 \\

1 & a_1 & 0 & \ldots & 0 \\
1 & 0 & a_2 & \ldots & 0 \\
\vdots & \vdots& &\ddots& \vdots\\
1 & 0 & 0 & \ldots & a_n \\
\end{vmatrix}



There seems to be a pattern going on for the determinant of the $5 \times 5$ version of this matrix, but I'm not sure how I would find the determinant for the $N \times N$ one.


Answer



Transform the matrix by the (determinant invariant) operation of adding $-a_i$ times the $(i+1)$th row on the first row. This gets us
\begin{vmatrix}

-\sum_i \frac{1}{a_i} & 0 & 0 & \ldots & 0 \\
1 & a_1 & 0 & \ldots & 0 \\
1 & 0 & a_2 & \ldots & 0 \\
\vdots & \vdots& &\ddots& \vdots\\
1 & 0 & 0 & \ldots & a_n \\
\end{vmatrix}

Then you have a lower triangle matrix whose determinant is just the product of the diagonal elements.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...