Let $K \subset L$ finite (therefore algebraic) field extension. So not neccessary Galois. How to see that for automorphisms following inequility holds:
$$|Aut(L/K)|\le|L/K|$$?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment